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Abstract—This paper extends the class of low-density parity- property that every parity-check equation, including a bit in the
check (LDPC) codes that can be algebraically constructed. We stopping set, is connected to at least two such bits. Recently, it
present regular LDPC codes based on resolvable Steiner 2-de5|gnsWas shown in [29] that if cycles of size four are avoided in the
which have Tanner graphs free of four-cycles. The resulting codes . . .
are (3, p)-regular or (4, p)-regular for any value of p and for a codes, then the size of thc_e smallest stopping set is atyenst
flexible choice of code lengths. wherey is the column weight of{.

The random constructions for LDPC codes produce parity-
check matrices with small column weights, allow flexible
choice of code parameters, and can be adapted to remove
small cycles from the Tanner graph of the code. However,

. INTRODUCTION the resulting codes are irregular and the removal of all small

OW-DENSITY parity-check (LDPC) codes were first pre5:ycles is difficult for higher rate codes. The algebraically

L sented by Gallager [13] in 1962 and created much interé&nstructed codes, on the other hand, offer guaranteed code
when rediscovered and shown to perform remarkably closeREPPerties including regularity, minimum distance, girth, and
the Shannon limit [6], [25]. Gallager proposed a decoding dit€; althgugh choice of code parameter; is I|m|tedl in eX|st!ng
gorithm which utilizes the sparsity of the parity-check matrigonstructions. Ideally, we seek codes with the flexible c_h0|ce
to decode iteratively with complexity linear in the code lengtipf code parameters of the random constructions, but with the
It has since been realized that this algorithm is a special casd8n€fits of algebraic construction. _ .
the sum-product decoding algorithm which is also used by turbo® key idea in this paper is that resolvable 2-designs provide
codes [20], [27]. an algebraic construction method for a large class of regular

It is known that the sum-product decoding algorithm cor-PPC codes with Tanner graphs free of four-cycles. The link
verges to the optimal solution provided that the Tanner grapftween combinatorial designs and codes is not a new one (see,
of the code satisfies a structural constraint, namely, that&tJd-» [2] and [26]) and many well-known codes are associated
is free of cycles [11], [27]. The existence of cycles in thavith designs, however, the methods for relating a design to a
Tanner graph prevents an exact error-probability analysis @tde are varied. The blocks of an orthogonal array, for example,
iterative decoding procedures, and the shorter the cyclesCR be used as the codewords of a nonbinary maximum distance
the graph, the sooner the analysis breaks down [32]. Variot@Parable code [26, p. 329], while the rows of the incidence
improvements have been made to Gallager’s original randdR#trix of a design can be used as the codewords of a nonlinear
construction method to avoid cycles and obtain the desirBhary code [26, p. 63]. More recently, erasure-resilient codes
column and row weights [17], [23], [25], [31], [32]. As well, for disk arrays have been constructed using the incidence matrix
algebraic constructions of LDPC matrices have been propo¥cf design as a portion of the parity-check matrix of the code
to provide regular codes with Tanner graphs free of four-cycl@-
[10], [12], [18], [19], [21], [22], [24], [34], [36], [38]. Codes designed for majority logic decoding [37] using the in-

In the special case of the binary-erasure channel, code perfdflence matrix of certain finite geometry designs as the parity-
mance with sum-product decoding can be determined explicitﬁt]eCk matrix have recently shown excellent performances with
and is based solely on the stopping set distribution of the codé4n-product decoding [22]. Like the codes for majority logic

their parity-check matrix, and the properties required for both

are similar. The design of codes for majority logic decoding fo-
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three (or four), and all row weights ape An advantage of these A simplistic approach to obtaining a lower rate code is to
codes is that the number of nonzero entries in the parity-chexkoose a design with greater than the required code length
matrix increases only linearly with the code length. Further, tiad remove some columns dfL. For each pair of points, y
length of the code can be chosen independently of the rate, amthe omitted column, the correspondihg, is zero, and thus,
existence is proved for an infinite class of code lengths for eattfe matrix so formed no longer represents the incidence matrix
allowable code rate. of a 2-design. Importantly, the incidence between the points and
As our construction is based on combinatorial design theorgmaining blocks is retained and four-cycles will still be avoided
we present in Section Il some background material on desighghe Tanner graph of the resulting code. Randomly removing
before describing the construction of resolvable designs. Sectumns fromNT, however, results in a parity-check matrix
tion 11l describes the LDPC codes from resolvable designs angth variable row weights, and can lead to rows with all entries
outlines their properties. The performance of the codes whegero. Ideally, we would like to be able to remove a group of
sum-product decoding is used is given in Section IV, and Saslumns of N7T in such a way that we reduce by one the weight

tion V concludes the paper. of every row in the matrix. For this, we need the design described
by IV to be resolvable. A design is resolvable if the blocks of the
[l. RESOLVABLE 2-DESIGNS design can be arranged int@roups, called resolution classes,

A combinatorial design is an arrangement of a set pbints such that they/k blocks of each resolution class are disjoint,

into b subsets, called blocks. A design is regular if the number BRd €ach class contains every point precisely once. STS designs
points in each block, and the number of blocks which contaff?ich are resolvable are called Kirkman triple systems (KTS).
each point, designateld and, respectively, are the same forJnlike the STS designs which exist for all= 1, 3(mod 6),
every point and block in the design. The number of blocks th&t'S designs onv points, denoted KT@), exist for allv =
two pointsz andy appear in together is denotag . A regular 1, 3(mod 6) [7, p. 89, Th. 6.7].
design is called adesign if everyt points of the design are in a : .
constant numbek of blocks together. 2-designs are also calle’é' Resolvable Designs From Difference Systems
balanced incomplete block designs (BIBDs), and are denoted ago generate the resolvable designs the concept of mixed dif-
2-(v,b,r,k, \), or simply 2{v, k, \) designs. ference systems is required. We first present background mate-

Every design can be described by a v incidence matrixV  rial on difference sets, systems, and mixed systems before pre-
where each row inV represents a block; of the design and senting in Constructions 1 and 2 the KTS designs. Our treatment
each column a poink; of difference systems follows Anderson [1], while the material
. on KTS designs is essentially Ray—Chaudri and Wilson’s orig-

N; ;= { L, if P e ,B'i (1) inal presentation [30], using the terminology of Anderson [1].
' 0, otherwise. Consider an arbitrary Abelian gro@pof orderv. A (v, k, \)

For a regular design, the number of ones\iris vrr = bk. difference set is & subset oG, D = {du,...,d}, such that

The incidence matrix of a combinatorial design is a bina§ach nonzero elemepte G occurs exactly\ times in the set
matrix which can be used as the parity-check matfiof a bi- of differences{d; —d; : d;,d; € D} [4, p. 330]. The translates
nary LDPC code, with the proportion of nonzero entriegdin of D are the setd) + g := {d + g : d € D}, for all elements
given byk/v. The parameters of an error-correcting code are de-€ ¢. The translates of a difference set in an Abelian group
noted|[n, K, d], wheren is the code lengthk the code dimen- are the blocks of a symmetric Steiner 2-design with point set
sion, andd the minimum distance of the code. When considhe elements of the group [1, p. 51]. The projective geometry
ering designs for LDPC codes, choosing a 2-design with1, designs used in [37] can be constructed from difference sets in
called a Steiner 2-design, is beneficial as it guarantees the tihs way. For example, the subset {1,2,4} 5 is a difference
sence of four-cycles in the Tanner graph of the resulting codeet with differences

One class of Steiner 2-designs that have been proposed 1-2=6(mod7), 1—4=4(mod7),
for generating LDPC codes are Steiner triple systems (STS), 2 —4=5(mod7), 2—1=1(mod7)
or (v,b,7,3,1) designs [24]. These designs exist for all ’ ’
v = 1, 3(mod 6) with b = v(v — 1) /6 blocks. For STS designs 4-1=3(mod7), 4-2=2(mod7)

v < b, and so the transpose of the STS incidence matrix and the translates of {1,2,4} give the blocks of the projective
used as the parity-check matrix of an STS-LDPC code; tlggometry (7,7,3,3,1) design [1].
convention is retained in the remainder of the letter. The codesDefinition 1: For an Abelian groupG of order v,

produced from STS designs are regular witparity checks, the ¢ k£ element subsetd; = {di1,di2,...,dir} Of
b code bits, column weight off equal to three, and row G form a (v,k,\) difference system if the differences
weight of H equal to(v — 1)/2. The dimension of the code isd; , — d; ,, (1 = 1,...,t;z,y = 1,...,k) give each nonzero

n — ranks(H ) whereranks(H) is the rank ofH over GF(2), element ofG exactly A times. The translates of the sets of
also called the 2-rank off. Since the dimension of the codea (v, k,\) difference system inG make up the blocks of

is at leasth — v, and since the code length= v(v — 1)/6 a (v,vt,kt,k,\) design with points the elements ¢f [1,
increases with the square of the number of parity checks, the. 2.2.2]. For example, the subsets {1,2,5} and {1,3,9} of
codes quickly become high rate. It would be useful to havg; form a difference system, and the translates of these
codes with the properties of STS codes but with a wider rangets are the blocks of a (13,26,6,3,1) design with point set
of available rates for each codeword length. P ={0,1,...,12}.
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An extension to the method of difference systems allows sev-Construction 2:[1, Th. 9.1.5] Letg = 6m + 1 be a prime
eral copies of each element of an Abelian group to be used. awer,m an integer and tak® = GF(q) x Z; U co. Chooséd,
G, an Abelian group of order, let H = G x Z,. Then’H con- a primitive element of:F(q), so that)®™ = 1 and§>™ = —1,
sists oftv elements{ copies of each element ¢f. An element and choose an integer so that?™ + 1 = 26*. Then the sets
(a,7) € H represents théth copy of the element in G. Ao

Definition 2: ForH = G x Z,, thek subsetd;,...,D, € - {01,’ 02, 0o} , o
H form a mixed difference system if there exists an integer ~ Bi = {0577, 9513 gitetomy 0 <i<m -1
such that for every,j € {1,2,...,t}, every elemeny € G Ci= {0,077, 05T}, 0<i<m-—1
occurs)\‘ t|me§ as the differender, i) — (y,¢), whereg = . —y D, — {9;+2m+u7 gitam, 9i+3m} 0<i<m-—1
and(z,i), (y,i) € D1,...,Ds. tdmdu giddm gitSm _

The translates of the s} are the set®); +g := {(z+g,1) : E; = {0; O T 0<i<m -1
(z,i) € Di} forall g € . The translates of the sets of a mixedorm a mixed difference system i. The sets of the mixed
difference system form the blocks of(&, sv, sk/t, k, A) de-  difference system partition th; + 1 elements of{ and make
sign with point set the elements &f [1, Th. 2.4.1]. KTS de- yp the first resolution class. Each translate of the sets give a
signs can be constructed in this way, and we now present C@fiither resolution class, and we have a KIS+ 1) design.
structions for the mixed difference systems required for the KTote that when forming the translatgs- oo = occ.
designs withy = 3¢ andv = 2¢ + 1, ¢ a prime power. For example, také{ = GF(7) x ZyUocandm =1,q =7,

Construction 1:[1, Th. 2.2.4] Letg = 6m + 1 be a prime andy = 15. Choosed = 3 andu = 2 and the required mixed
power,m an integer and take, a primitive element oGF(q),  difference system is
so thatd®™ = 1, #3™ = —1, andf?>™ + 1 = ™. The point set
is H = GF(q) x Zs and the mixed difference system consists4 = {01,02,00},  B= {32,55,6,},

of the sets 02{11,31,22}, D= {21,61,42}, E= {41,51,12}. (3)
A= {01.’ 02} 03} . These sets make up the six blocks of the first resolution class of
Bij = {05,0:7", 07" 1<i<m the KTS(15), and each successive resolution class is obtained
Ci; = {9;‘_+m7 gj'fimv ijim} 1<i<m by forming translates of these sets. The first translate is
D;j= {0;176;121’”,0;1‘5" , 1<i<m {11,12,00}, {42,62,02},
for 1 < j < 3 (mod 3), whered} = (¢°,j) € H. The sets {21,41,32 {31,001, 524, {51,612}

A, B; ;, andC; ; of the mixed difference system make up théf we take the ordering of the points to be

blocks of one resolution class of a design, and each translatgof.,. . . 6, 0s.. .. ,62, 00}, the first 20 columns ofN T for this

these sets gives a further resolution class. Next, eachset KTS (15,35,3,7,1) design are shown in Fig. 1. The entire

with its translates gives a resolution class; so we obtain a toliatidence matrix of the KTS design provides the parity-check

of 9m + 1 resolution classes and we have a K(B3). matrix for a [35,21,4] LDPC code, while if just the first four
For example, také{ = GF(7) x Z3, m = 1, ¢ = 7, and resolution classes (shown in Fig. 1) are usedHqrthe code

v = 21. Choose& = 3 and the mixed difference system is has parameters [20,6,6].

Alternative constructions for STS designs exist which, while

A =1{01,05,0 . . . .
{01,05, r3} _ _ not producing resolvable designs, do produce designs which are

B ={31,61,51}, {32,62,52}, {33,63,53} 3-resolvable. That is, the blocks of the STS design gmints

C ={21,42,13}, {29,43,11}, {23,41,15} can be grouped into classesudblocks with each point incident

D ={31,32,33}, {62,63,61}, {53,51.5:}. (2 in exactly three of the blocks in the class. These 3-resolvable

, . STS designs are cyclic, that is, wheneyerb, c} is a triple of
The setsA, B, andC make up the blocks of the first resolutiony, design, so i§a + 1,b + 1, ¢ + 1}. The cyclic STS designs

class of the design and the six translates of these sets make,uip; tor ally = 1. 3 (mod 6) except — 9, with blocks the

the blocks of the next six resolution classes. The blocks in the clates of a difference systemdn [1, Sec. 8.3]. Cyclic STS

second resolution class (the translateloB, andC' with g = 1) gesigns were used in [34] and [35] to produce LDPC codes for

are magnetic recording channels. The codes presented in [34] and
{11,12,13},  {41,01,61}, {42,02,62}, [35] cannot be derived from KTS designs (see, e.g., [7, p. 89,
{43703763}7 {31752723}7 {32753721}7 {33751722}- Th 67])

Next, the translates of each block In make up a resolution

class; for the first blockD 1, this class is

{31732733}7 {41742743}7 {51752753}7

I1l. LDPC CODESFROM RESOLVABLE STEINER 2-DESIGNS
KTS-LDPC codes can be constructed for any number of

parity checksm = 3 (mod 6). The number of resolution
{61,62,63},  {01,02,03},  {Li, 12,15}, {21, 22,25} classey € {4,5,...,(v — 1)/2} determines the row weight
Altogether, there are ten resolution classes, each with sew#nH, which is p, the code lengtm = (pv)/3, and the

blocks, to give the KTS (21,70,3,10,1) design. Each block dete, R ~ (p — 3)/p. Conversely, for a given code rate
fines a row of a binary incidence matrix, as in (1), the transpoge= (p — 3)/p, for p any integer, KTS-LDPC codes exist for
of which is a parity-check matrix for a [70,49,4] LDPC code. any block length: = 3/(1 — R)mod(6/(1 — R)). The number
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1 1 .o o1 1 1
1 1 . .o 1 1
1 1. 1. . 1
1 1 S 1
1 1. o1 1
1 .1 T 1
1 oo . 1 1
1 1. 1. 1
1 1 1. 1
1 . o1 1 . 1
1 . 1 . . 1 1
1 1. 1 1
1 . 1 1. 1
1 o1 1 1
|1 1 1 1 |

Fig. 1. First four resolution classes of a KTS(15) design.

of nonzero entries in the parity-check matrix of a KTS codef a code from a Steiner 2-design orpoints withk points in

is 3n and so increases only linearly withh This will result each block can be counted

in a decoding complexity advantage over those algebraically K\ v(v = 1)(v — k)

constructed codes which have code length as a function of Ng(v) = <2>W

column weight. For example, the LDPC codes from projective

geometry designs have= ¢2 + ¢ + 1, column weighty + 1, The number of six-cycles in the codes taking a subset of the

and(q + 1)(¢® + ¢ + 1) nonzero entries i . blocks of a Steiner 2-design will, of course, be upper bounded
For any given set of code parameters, there will be multiply (5), as removing columns from a matrix cannot add cycles.

choices of resolution classes. At present, the best method seems

to be to choose a combination of resolution classes which givés Minimum Distance

good minimum distance results using Tanner's parity-checkThe minimum distance of a code is equal to the minimum
bound [33]. nonzero number of columns in the parity-check matrix for
A Rank which a nontrivial linear combination sums to zero [39, p. 84].

’ The properties of Steiner 2-designs ensure that all columns in

If the 2-rank of the parity-check matrix of a code is knownthe parity-check matrix have weight and that no two columns
we can determine the rate of the code exa¢fly = (n — share more than one point. Therefore, at ldast 1 columns
ranko(H))/n). For the STS designs, full-rank incidence maare needed to sum to zero adgl;, > k + 1 for the codes
trices are guaranteed for all choicesvak 1, 9 (mod 12), while presented in this letter.
for v = 3, 7 (mod 12) the 2-rank oV depends on the structure  For KTS designs to obtain codes with minimum distance of
of the design (and hence, its construction) and is bounded asg®]east six, we need to establish the existence of KTS designs

ranka (N) > v — log(v + 1). (4) thgt Iack_colleqtions of four bl(_)cks employing_just six_ points, as
this configuration of blocks will lead to a minimum distance of

As the KTS designs are a special case of STS designs, thefégr. The particular configuration consisting of just four blocks
sults above hold for them also. For the KTS designs presentecid six points, with each block containing three points, and each
this letter, we observe that Construction 1 produces designs wiint incident with precisely two blocks is called a Pasch con-
full-rank incidence matrices, while Construction 2 produces dfiguration, or quadrilateral. The term anti-Pasch is used to de-
signs with one linearly dependent row in their incidence matrixcribe a design that lacks a Pasch configuration. It has recently
corresponding to the point ab which will remain linearly de- been proven that anti-Pasch STS designs exist forfalwhich
pendent in the KTS codes regardless of the selection of resoiFS designs exist [15]. Recent constructions have been found
tion classes. For all < 500 corresponding to prime, fullrank  for anti-Pasch KTS witv = 9 (mod 18) [5] and codes con-
(Construction 1) and rank — 1 (Construction 2) codes havestructed from the resolution classes of these designs will have
easily been constructed for any number of resolution classgg, > 6. When using KTS designs which are not anti-Pasch,
greater than three. In fact, the majority of the possible selegn option is to discard those resolution classes that involve a
tions of resolution classes produce codes of the maximum rapigsch configuration when selecting resolution classes of the de-
but we leave as an open problem formally determining existensign to construct a KTS-LDPC code. For example, a rate-1/2
results. anti-Pasch LDPC code can be constructed from the KTS(21) in
(2), by selecting the first, second, third, fourth, eighth, and ninth
resolution classes.

As no two points in a Steiner 2-design can be incident in more The Pasch configuration is also the only possible configura-
than one block together, four-cycles are avoided in the Tanriem of bits and checks which results in a stopping set of size
graph of all LDPC codes obtained in this way. However, the réaur in a KTS code. So by choosing an anti-Pasch KTS design,
quirement that every pair of points occur in exactly one block tthe minimum stopping set size is increased to five. To further in-
gether guarantees the existence of six-cycles in the Tanner grapgase this bound to six, mitre configurations [8] (which consist
of the code. The exact number of six-cycles in the Tanner graphjust five blocks and seven points, with each block containing

®)

B. Cycles



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 9, SEPTEMBER 2003 1417

107" T

three points, one point incident with three blocks and every othe
pointincident with precisely two blocks) need to be avoided. Al-
though some STS designs without both mitre and Pasch config
urations, called five-sparse designs, have been found, a gener
existence result is lacking [8].

Resolvable Steiner 2-designs exist for > 4, and these w0l
designs produce codes with larger column weights, and henceg
larger minimum distances. However, as for randomly con-
structed codes, simulation results suggest that, in general, whe® ,
the column weights of these codes are increased from three,
performance degradation results. In [10], it was shown that a e e Rt 114,57, 4]
very high rates array codes with column weight four performed o= == £1=toro bt 28
well with sum-product decoding. In the following section, we o Reiore )
will show that this is also true of resolvable Steiner 2-designs
with & = 4. These resolvabl@ — (v,4,1) designs can be 17 : .
constructed in a similar manner to KTS designs and exist for all
Y E 4 (mo_d 12) [1], [16]. The .COdeS from these d_eSIQnS ha\lL—elg.Z. Bit-error rate (BER) versus, /N, for rate 1/2 LDPC codes, maximum
minimum distance> 5 and avoid stopping sets of size smallefiarations= 500.
than five.

107F

Bit error r.

D. Implementation

One benefit of a deterministic construction is that the storage |
requirements necessary to completely describe the code a
reduced. For the codes from KTS and resolvable(v, 4, 1)
designs, only the sets of the difference system are required; th ¢
translates can be constructed online, whereas for arandom coc,
the entire parity-check matrix must be stored. For a code frorr
Construction 1, this requires storage(of+ 3)/6 sets of size
three, while codes from Construction 2 require storage/sf | e e 1029,883, 2.4]
sets of size three. The codes from resolvabld v, 4, 1) designs -o- KTS-LDPC [1029,883, > 4]
requirev/4 sets of size four to be stored. If storage is a significant - KTS-LDPC [261,175, 2 4]

(3

Bit error rat
=)
IS
T

—x- Random LDPC [261,175, > 4]
issue, itis possible to specify only the required value:aind the 10| o KIS ADPO (518845 s d]
primitive elemend and the entire code can be constructed online & SRRt
with some expenditure in terms of computational complexity. o , ) ) , , , , , ,
Alternatively, where hardwiring of the Tanner graph is em- e
ployed [3], the regularity of the codes from KTS and resolvable
2—(v,4,1) designs translate directly into regularity in the veryig. 3. BER versusZ, /N for LDPC codes, maximum iteratiors 50.
large scale integration (VLSI) layout. Further, if cyclically re-

solvable cyclic KTS designs [14] are employed, encoding CaRethod from [25] and [28], and we have chosen parity-check
be achieved in linear time with shift register circuits in muciyatrices which lead to codes with Tanner graphs free of four-cy-

the same way as for quasi-cyclic codes. _cles. For all the codes presented in this section, the dimension
The resolution classes of the codes from resolvable SteiRgkne code has been calculated exactly.

2-designs also (_)ffer a significant degree of flgxibility when it Fig. 2 shows the performance of rate-1/2 KTS, EG, and
comes tg selecting co_de lengths and rates on_llne. Once the ?&tﬁlomly generated LDPC codes. The KTS codes are from
of the dlffe_rence f_amlly are st(_)red, longer higher rate cod%sl-s(57) and KTS(255) designs. The performance of the KTS
can be achieved simply by adding another translate to the cQfyes i5 similar to the performance of the randomly generated

which adds to the number of message bits without changing g6 \hich have the same rate, codeword length, and an equal

number of parity bits. The only information that needs to bﬁumber of nonzero entries iAl. All three lengthn ~ 510

commumcated to completely specify the code in use is the r%Ydes have similar block lengths and rates, however, they are
olution classes employed. not equally sparse. The EG code is (6,8)-regular while the KTS
code is (3,6)-regular. While all codes have the same number
of columns in their parity-check matrix, the EG code has more
We employed sum-product decoding, also known as beligiws, some of which are linearly dependent. Consequently, the
propagation decoding, as presented in [23]. In the simulatiéfs code has twice as many nonzero entries in its parity-check
results that follow, codes from KTS and resolvable(v, 4,1) matrix, resulting in a significant increase in computational
designs are compared with randomly constructed codes and Eemplexity for the same number of decoding iterations.
clidean geometry (EG) codes. The EG codes used are thoskig. 3 shows the performance of rate-2/3 LDPC codes and
from [21]. The random LDPC codes were constructed using theo rate-0.86 LDPC codes. The KTS codes are from KTS(87),

IV. SIMULATION RESULTSUSING ITERATIVE DECODING
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(4]

4 (3]

(6]

[71
(8]
[9]

Bit error rate

10°} - -~ Uncoded BPSK 4
—x— Random LDPGC [2000,1840, > 2] col. wt. 3
—+- Random LDPC {2000,1840, > 2] col. wt. 4
-~ 2-(v,4,1) LDPC [2000,1840, > 5]

(10]
10 2 2?5 é 375 Alt 415 é 5{5 6
E/N, (dB)
(11]
Fig. 4. BER versu€z, /N, for LDPC codes, maximum iteratiors 50.
[12]
KTS(147), and KTS(171) designs. All three lengtb13 codes  [13]

have parity-check matrices with column weight three and so re-
quire equal computational complexity for decoding, as do botfi4
length 1029 codes. The KTS codes perform as well as randomly
constructed codes. [15]
Fig. 4 shows the performance of high-rate length 2000 codes.
The column weight four code from the resolvable 2-(160,4,1)1¢)
design significantly outperforms both the column weight three
and column weight four random LDPC codes. In neither casé’]
were we able to construct random codes at this high rate which
were completely free of four-cycles. [18]

V. CONCLUSION [19]

We have presented a construction method for LDPC codes
based on the resolution classes of resolvable Steiner 2-designm]
The method produces very sparse parity-check matrices having
constant column and row weight, girth equal to six and with[21]
a flexible choice of code parameters. We have shown by con-
sidered application of design theory that it is not necessary for
LDPC codes to be constructed randomly to achieve good dé?
coding performances at moderate lengths and for a wide range
of code parameters. (23]
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