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Abstract—This paper extends the class of low-density parity-
check (LDPC) codes that can be algebraically constructed. We
present regular LDPC codes based on resolvable Steiner 2-designs
which have Tanner graphs free of four-cycles. The resulting codes
are (3 )-regular or (4 )-regular for any value of and for a
flexible choice of code lengths.

Index Terms—Combinatorial designs, iterative decoding, low-
density parity-check (LDPC) codes.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes were first pre-
sented by Gallager [13] in 1962 and created much interest

when rediscovered and shown to perform remarkably close to
the Shannon limit [6], [25]. Gallager proposed a decoding al-
gorithm which utilizes the sparsity of the parity-check matrix
to decode iteratively with complexity linear in the code length.
It has since been realized that this algorithm is a special case of
the sum-product decoding algorithm which is also used by turbo
codes [20], [27].

It is known that the sum-product decoding algorithm con-
verges to the optimal solution provided that the Tanner graph
of the code satisfies a structural constraint, namely, that it
is free of cycles [11], [27]. The existence of cycles in the
Tanner graph prevents an exact error-probability analysis of
iterative decoding procedures, and the shorter the cycles in
the graph, the sooner the analysis breaks down [32]. Various
improvements have been made to Gallager’s original random
construction method to avoid cycles and obtain the desired
column and row weights [17], [23], [25], [31], [32]. As well,
algebraic constructions of LDPC matrices have been proposed
to provide regular codes with Tanner graphs free of four-cycles
[10], [12], [18], [19], [21], [22], [24], [34], [36], [38].

In the special case of the binary-erasure channel, code perfor-
mance with sum-product decoding can be determined explicitly,
and is based solely on the stopping set distribution of the codes
[9]. A stopping set is a set of codeword bit positions with the
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property that every parity-check equation, including a bit in the
stopping set, is connected to at least two such bits. Recently, it
was shown in [29] that if cycles of size four are avoided in the
codes, then the size of the smallest stopping set is at least,
where is the column weight of .

The random constructions for LDPC codes produce parity-
check matrices with small column weights, allow flexible
choice of code parameters, and can be adapted to remove
small cycles from the Tanner graph of the code. However,
the resulting codes are irregular and the removal of all small
cycles is difficult for higher rate codes. The algebraically
constructed codes, on the other hand, offer guaranteed code
properties including regularity, minimum distance, girth, and
rate, although choice of code parameters is limited in existing
constructions. Ideally, we seek codes with the flexible choice
of code parameters of the random constructions, but with the
benefits of algebraic construction.

A key idea in this paper is that resolvable 2-designs provide
an algebraic construction method for a large class of regular
LDPC codes with Tanner graphs free of four-cycles. The link
between combinatorial designs and codes is not a new one (see,
e.g., [2] and [26]) and many well-known codes are associated
with designs, however, the methods for relating a design to a
code are varied. The blocks of an orthogonal array, for example,
can be used as the codewords of a nonbinary maximum distance
separable code [26, p. 329], while the rows of the incidence
matrix of a design can be used as the codewords of a nonlinear
binary code [26, p. 63]. More recently, erasure-resilient codes
for disk arrays have been constructed using the incidence matrix
of a design as a portion of the parity-check matrix of the code
[5].

Codes designed for majority logic decoding [37] using the in-
cidence matrix of certain finite geometry designs as the parity-
check matrix have recently shown excellent performances with
sum-product decoding [22]. Like the codes for majority logic
decoding, the codes for sum-product decoding are designed via
their parity-check matrix, and the properties required for both
are similar. The design of codes for majority logic decoding fo-
cused on the designs which give a larger column weight in
because the minimum distance of the codes was a priority and
increased column weight gives better minimum distance proper-
ties in the resulting code. However, when sum-product decoding
is considered, the low density of the parity-check matrix is an
important property of the codes and the designs we consider
have an advantage in this area.

The codes presented in this work are -regular (or
-regular); that is, all column weights of are equal to

0090-6778/03$17.00 © 2003 IEEE



1414 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 9, SEPTEMBER 2003

three (or four), and all row weights are. An advantage of these
codes is that the number of nonzero entries in the parity-check
matrix increases only linearly with the code length. Further, the
length of the code can be chosen independently of the rate, and
existence is proved for an infinite class of code lengths for each
allowable code rate.

As our construction is based on combinatorial design theory,
we present in Section II some background material on designs
before describing the construction of resolvable designs. Sec-
tion III describes the LDPC codes from resolvable designs and
outlines their properties. The performance of the codes when
sum-product decoding is used is given in Section IV, and Sec-
tion V concludes the paper.

II. RESOLVABLE 2-DESIGNS

A combinatorial design is an arrangement of a set ofpoints
into subsets, called blocks. A design is regular if the number of
points in each block, and the number of blocks which contain
each point, designated and , respectively, are the same for
every point and block in the design. The number of blocks that
two points and appear in together is denoted . A regular
design is called adesign if every points of the design are in a
constant number of blocks together. 2-designs are also called
balanced incomplete block designs (BIBDs), and are denoted as
2- , or simply 2- designs.

Every design can be described by a incidence matrix
where each row in represents a block of the design and
each column a point

if
otherwise.

(1)

For a regular design, the number of ones inis .
The incidence matrix of a combinatorial design is a binary

matrix which can be used as the parity-check matrixof a bi-
nary LDPC code, with the proportion of nonzero entries in
given by . The parameters of an error-correcting code are de-
noted , where is the code length, the code dimen-
sion, and the minimum distance of the code. When consid-
ering designs for LDPC codes, choosing a 2-design with ,
called a Steiner 2-design, is beneficial as it guarantees the ab-
sence of four-cycles in the Tanner graph of the resulting code.

One class of Steiner 2-designs that have been proposed
for generating LDPC codes are Steiner triple systems (STS),
or designs [24]. These designs exist for all

with blocks. For STS designs
, and so the transpose of the STS incidence matrix is

used as the parity-check matrix of an STS-LDPC code; this
convention is retained in the remainder of the letter. The codes
produced from STS designs are regular withparity checks,

code bits, column weight of equal to three, and row
weight of equal to . The dimension of the code is

where is the rank of over GF(2),
also called the 2-rank of . Since the dimension of the code
is at least , and since the code length
increases with the square of the number of parity checks, the
codes quickly become high rate. It would be useful to have
codes with the properties of STS codes but with a wider range
of available rates for each codeword length.

A simplistic approach to obtaining a lower rate code is to
choose a design with greater than the required code length
and remove some columns of . For each pair of points,
in the omitted column, the corresponding is zero, and thus,
the matrix so formed no longer represents the incidence matrix
of a 2-design. Importantly, the incidence between the points and
remaining blocks is retained and four-cycles will still be avoided
in the Tanner graph of the resulting code. Randomly removing
columns from , however, results in a parity-check matrix
with variable row weights, and can lead to rows with all entries
zero. Ideally, we would like to be able to remove a group of
columns of in such a way that we reduce by one the weight
of every row in the matrix. For this, we need the design described
by to be resolvable. A design is resolvable if the blocks of the
design can be arranged intogroups, called resolution classes,
such that the blocks of each resolution class are disjoint,
and each class contains every point precisely once. STS designs
which are resolvable are called Kirkman triple systems (KTS).
Unlike the STS designs which exist for all ,
KTS designs on points, denoted KTS , exist for all

[7, p. 89, Th. 6.7].

A. Resolvable Designs From Difference Systems

To generate the resolvable designs the concept of mixed dif-
ference systems is required. We first present background mate-
rial on difference sets, systems, and mixed systems before pre-
senting in Constructions 1 and 2 the KTS designs. Our treatment
of difference systems follows Anderson [1], while the material
on KTS designs is essentially Ray–Chaudri and Wilson’s orig-
inal presentation [30], using the terminology of Anderson [1].

Consider an arbitrary Abelian groupof order . A
difference set is a subset of , , such that
each nonzero element occurs exactly times in the set
of differences [4, p. 330]. The translates
of are the sets , for all elements

. The translates of a difference set in an Abelian group
are the blocks of a symmetric Steiner 2-design with point set
the elements of the group [1, p. 51]. The projective geometry
designs used in [37] can be constructed from difference sets in
this way. For example, the subset {1,2,4} of is a difference
set with differences

and the translates of {1,2,4} give the blocks of the projective
geometry (7,7,3,3,1) design [1].

Definition 1: For an Abelian group of order ,
the element subsets of

form a difference system if the differences
give each nonzero

element of exactly times. The translates of the sets of
a difference system in make up the blocks of
a design with points the elements of [1,
Th. 2.2.2]. For example, the subsets {1,2,5} and {1,3,9} of

form a difference system, and the translates of these
sets are the blocks of a (13,26,6,3,1) design with point set

.
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An extension to the method of difference systems allows sev-
eral copies of each element of an Abelian group to be used. For

, an Abelian group of order, let . Then con-
sists of elements, copies of each element of. An element

represents theth copy of the element in .
Definition 2: For , the subsets
form a mixed difference system if there exists an integer

such that for every , every element
occurs times as the difference , where
and , .

The translates of the set are the sets
for all . The translates of the sets of a mixed

difference system form the blocks of a de-
sign with point set the elements of [1, Th. 2.4.1]. KTS de-
signs can be constructed in this way, and we now present con-
structions for the mixed difference systems required for the KTS
designs with and , a prime power.

Construction 1: [1, Th. 2.2.4] Let be a prime
power, an integer and take, a primitive element of ,
so that , , and . The point set
is and the mixed difference system consists
of the sets

for (mod 3), where . The sets
, , and of the mixed difference system make up the

blocks of one resolution class of a design, and each translate of
these sets gives a further resolution class. Next, each set
with its translates gives a resolution class; so we obtain a total
of resolution classes and we have a KTS .

For example, take , , , and
. Choose and the mixed difference system is

(2)

The sets , , and make up the blocks of the first resolution
class of the design and the six translates of these sets make up
the blocks of the next six resolution classes. The blocks in the
second resolution class (the translate of, , and with )
are

Next, the translates of each block in make up a resolution
class; for the first block, , this class is

Altogether, there are ten resolution classes, each with seven
blocks, to give the KTS (21,70,3,10,1) design. Each block de-
fines a row of a binary incidence matrix, as in (1), the transpose
of which is a parity-check matrix for a [70,49,4] LDPC code.

Construction 2: [1, Th. 9.1.5] Let be a prime
power, an integer and take . Choose ,
a primitive element of , so that and ,
and choose an integer, so that . Then the sets

form a mixed difference system in . The sets of the mixed
difference system partition the elements of and make
up the first resolution class. Each translate of the sets give a
further resolution class, and we have a KTS design.
Note that when forming the translates .

For example, take and , ,
and . Choose and and the required mixed
difference system is

(3)

These sets make up the six blocks of the first resolution class of
the KTS(15), and each successive resolution class is obtained
by forming translates of these sets. The first translate is

If we take the ordering of the points to be
, the first 20 columns of for this

KTS (15,35,3,7,1) design are shown in Fig. 1. The entire
incidence matrix of the KTS design provides the parity-check
matrix for a [35,21,4] LDPC code, while if just the first four
resolution classes (shown in Fig. 1) are used for, the code
has parameters [20,6,6].

Alternative constructions for STS designs exist which, while
not producing resolvable designs, do produce designs which are
3-resolvable. That is, the blocks of the STS design onpoints
can be grouped into classes ofblocks with each point incident
in exactly three of the blocks in the class. These 3-resolvable
STS designs are cyclic, that is, whenever is a triple of
the design, so is . The cyclic STS designs
exist for all 1, 3 (mod 6) except , with blocks the
translates of a difference system in [1, Sec. 8.3]. Cyclic STS
designs were used in [34] and [35] to produce LDPC codes for
magnetic recording channels. The codes presented in [34] and
[35] cannot be derived from KTS designs (see, e.g., [7, p. 89,
Th. 6.7]).

III. LDPC CODESFROM RESOLVABLE STEINER 2-DESIGNS

KTS-LDPC codes can be constructed for any number of
parity checks (mod 6). The number of resolution
classes determines the row weight
of , which is , the code length , and the
rate, . Conversely, for a given code rate

, for any integer, KTS-LDPC codes exist for
any block length . The number
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Fig. 1. First four resolution classes of a KTS(15) design.

of nonzero entries in the parity-check matrix of a KTS code
is and so increases only linearly with. This will result
in a decoding complexity advantage over those algebraically
constructed codes which have code length as a function of
column weight. For example, the LDPC codes from projective
geometry designs have , column weight ,
and nonzero entries in .

For any given set of code parameters, there will be multiple
choices of resolution classes. At present, the best method seems
to be to choose a combination of resolution classes which gives
good minimum distance results using Tanner’s parity-check
bound [33].

A. Rank

If the 2-rank of the parity-check matrix of a code is known,
we can determine the rate of the code exactly

. For the STS designs, full-rank incidence ma-
trices are guaranteed for all choices of 1, 9 (mod 12), while
for 3, 7 (mod 12) the 2-rank of depends on the structure
of the design (and hence, its construction) and is bounded as [2]

(4)

As the KTS designs are a special case of STS designs, the re-
sults above hold for them also. For the KTS designs presented in
this letter, we observe that Construction 1 produces designs with
full-rank incidence matrices, while Construction 2 produces de-
signs with one linearly dependent row in their incidence matrix,
corresponding to the point at which will remain linearly de-
pendent in the KTS codes regardless of the selection of resolu-
tion classes. For all corresponding to prime, full rank
(Construction 1) and rank (Construction 2) codes have
easily been constructed for any number of resolution classes
greater than three. In fact, the majority of the possible selec-
tions of resolution classes produce codes of the maximum rank,
but we leave as an open problem formally determining existence
results.

B. Cycles

As no two points in a Steiner 2-design can be incident in more
than one block together, four-cycles are avoided in the Tanner
graph of all LDPC codes obtained in this way. However, the re-
quirement that every pair of points occur in exactly one block to-
gether guarantees the existence of six-cycles in the Tanner graph
of the code. The exact number of six-cycles in the Tanner graph

of a code from a Steiner 2-design onpoints with points in
each block can be counted

(5)

The number of six-cycles in the codes taking a subset of the
blocks of a Steiner 2-design will, of course, be upper bounded
by (5), as removing columns from a matrix cannot add cycles.

C. Minimum Distance

The minimum distance of a code is equal to the minimum
nonzero number of columns in the parity-check matrix for
which a nontrivial linear combination sums to zero [39, p. 84].
The properties of Steiner 2-designs ensure that all columns in
the parity-check matrix have weight, and that no two columns
share more than one point. Therefore, at least columns
are needed to sum to zero and for the codes
presented in this letter.

For KTS designs to obtain codes with minimum distance of
at least six, we need to establish the existence of KTS designs
that lack collections of four blocks employing just six points, as
this configuration of blocks will lead to a minimum distance of
four. The particular configuration consisting of just four blocks
and six points, with each block containing three points, and each
point incident with precisely two blocks is called a Pasch con-
figuration, or quadrilateral. The term anti-Pasch is used to de-
scribe a design that lacks a Pasch configuration. It has recently
been proven that anti-Pasch STS designs exist for allfor which
STS designs exist [15]. Recent constructions have been found
for anti-Pasch KTS with (mod 18) [5] and codes con-
structed from the resolution classes of these designs will have

. When using KTS designs which are not anti-Pasch,
an option is to discard those resolution classes that involve a
Pasch configuration when selecting resolution classes of the de-
sign to construct a KTS-LDPC code. For example, a rate-1/2
anti-Pasch LDPC code can be constructed from the KTS(21) in
(2), by selecting the first, second, third, fourth, eighth, and ninth
resolution classes.

The Pasch configuration is also the only possible configura-
tion of bits and checks which results in a stopping set of size
four in a KTS code. So by choosing an anti-Pasch KTS design,
the minimum stopping set size is increased to five. To further in-
crease this bound to six, mitre configurations [8] (which consist
of just five blocks and seven points, with each block containing
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three points, one point incident with three blocks and every other
point incident with precisely two blocks) need to be avoided. Al-
though some STS designs without both mitre and Pasch config-
urations, called five-sparse designs, have been found, a general
existence result is lacking [8].

Resolvable Steiner 2-designs exist for , and these
designs produce codes with larger column weights, and hence,
larger minimum distances. However, as for randomly con-
structed codes, simulation results suggest that, in general, when
the column weights of these codes are increased from three, a
performance degradation results. In [10], it was shown that at
very high rates array codes with column weight four performed
well with sum-product decoding. In the following section, we
will show that this is also true of resolvable Steiner 2-designs
with . These resolvable designs can be
constructed in a similar manner to KTS designs and exist for all

(mod 12) [1], [16]. The codes from these designs have
minimum distance and avoid stopping sets of size smaller
than five.

D. Implementation

One benefit of a deterministic construction is that the storage
requirements necessary to completely describe the code are
reduced. For the codes from KTS and resolvable
designs, only the sets of the difference system are required; the
translates can be constructed online, whereas for a random code,
the entire parity-check matrix must be stored. For a code from
Construction 1, this requires storage of sets of size
three, while codes from Construction 2 require storage of
sets of size three. The codes from resolvable designs
require sets of size four to be stored. If storage is a significant
issue, it is possible to specify only the required value ofand the
primitive element and the entire code can be constructed online
with some expenditure in terms of computational complexity.

Alternatively, where hardwiring of the Tanner graph is em-
ployed [3], the regularity of the codes from KTS and resolvable

designs translate directly into regularity in the very
large scale integration (VLSI) layout. Further, if cyclically re-
solvable cyclic KTS designs [14] are employed, encoding can
be achieved in linear time with shift register circuits in much
the same way as for quasi-cyclic codes.

The resolution classes of the codes from resolvable Steiner
2-designs also offer a significant degree of flexibility when it
comes to selecting code lengths and rates online. Once the sets
of the difference family are stored, longer higher rate codes
can be achieved simply by adding another translate to the code
which adds to the number of message bits without changing the
number of parity bits. The only information that needs to be
communicated to completely specify the code in use is the res-
olution classes employed.

IV. SIMULATION RESULTSUSING ITERATIVE DECODING

We employed sum-product decoding, also known as belief
propagation decoding, as presented in [23]. In the simulation
results that follow, codes from KTS and resolvable
designs are compared with randomly constructed codes and Eu-
clidean geometry (EG) codes. The EG codes used are those
from [21]. The random LDPC codes were constructed using the

Fig. 2. Bit-error rate (BER) versusE =N for rate 1/2 LDPC codes, maximum
iterations= 500.

Fig. 3. BER versusE =N for LDPC codes, maximum iterations= 50.

method from [25] and [28], and we have chosen parity-check
matrices which lead to codes with Tanner graphs free of four-cy-
cles. For all the codes presented in this section, the dimension
of the code has been calculated exactly.

Fig. 2 shows the performance of rate-1/2 KTS, EG, and
randomly generated LDPC codes. The KTS codes are from
KTS(57) and KTS(255) designs. The performance of the KTS
codes is similar to the performance of the randomly generated
codes which have the same rate, codeword length, and an equal
number of nonzero entries in . All three length
codes have similar block lengths and rates, however, they are
not equally sparse. The EG code is (6,8)-regular while the KTS
code is (3,6)-regular. While all codes have the same number
of columns in their parity-check matrix, the EG code has more
rows, some of which are linearly dependent. Consequently, the
EG code has twice as many nonzero entries in its parity-check
matrix, resulting in a significant increase in computational
complexity for the same number of decoding iterations.

Fig. 3 shows the performance of rate-2/3 LDPC codes and
two rate-0.86 LDPC codes. The KTS codes are from KTS(87),
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Fig. 4. BER versusE =N for LDPC codes, maximum iterations= 50.

KTS(147), and KTS(171) designs. All three length513 codes
have parity-check matrices with column weight three and so re-
quire equal computational complexity for decoding, as do both
length 1029 codes. The KTS codes perform as well as randomly
constructed codes.

Fig. 4 shows the performance of high-rate length 2000 codes.
The column weight four code from the resolvable 2-(160,4,1)
design significantly outperforms both the column weight three
and column weight four random LDPC codes. In neither case
were we able to construct random codes at this high rate which
were completely free of four-cycles.

V. CONCLUSION

We have presented a construction method for LDPC codes
based on the resolution classes of resolvable Steiner 2-designs.
The method produces very sparse parity-check matrices having
constant column and row weight, girth equal to six and with
a flexible choice of code parameters. We have shown by con-
sidered application of design theory that it is not necessary for
LDPC codes to be constructed randomly to achieve good de-
coding performances at moderate lengths and for a wide range
of code parameters.
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